Determining soil engineering parameters from CPT data

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Cone Penetration Testing

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD
OF THE NATIONAL ACADEMIES

Downloads available at:

(http://10.160.173.166/GRG/research_themes/geo-implementation/data-int/cpt/cpt_main.htm)

- 1. CPT Previewer documentation
- 2. CPT data to XML conversion documentation
- 3. <u>Vertek CPT Processing Software</u>
- 4. Hogentogler CPT Processing Software
- 5. <u>10 Recommended Articles</u>
- 6. Axial capacity of driven piles
- 7. Louisiana Pile CPT22
- 8. Performance evaluation of pile foundation using CPT
- 10. Pile bearing capacity prediction
- 11. Pile foundations for large north sea structures
- 12. <u>SBT and Fines</u> (excel spreadsheet)
- 13. Soil classification using the CPT
- 14. <u>US National Report on CPT</u>
- 15. <u>Use of CPTu to Estimate Equivalent SPT N60</u>
- 16. CPT Soil Property Interpretation
- 17. CPT Liquefaction
- 18. CPT interpretation (excel spreadsheet)
- 19. CPT liquefaction Analysis (excel spreadsheet)

"As with conventional practice, soils are grouped into either clays or sands, in particular referring to "vanilla" clays and "hourglass" sands."

Non-textbook geomaterials that require site-specific validation of these relationships include:

- Cemented sands
- Carbonate sands
- Sensitive clays
- Residual and tropical clays
- Glacial till
- Dispersive clays
- Collapsible soils

Correlations to the following engineering parameters are presented:

- 1. Shear wave velocity
- 2. Unit weight
- 3. Small strain shear modulus
- 4. Soil stiffness
- 5. Stress history preconsolidation stress
- 6. Effective stress strength (ϕ')
- 7. Undrained shear strength of clays
- 8. Sensitivity
- 9. Relative density of clean sands
- 10. Coefficient of consolidation
- 11. Rigidity index

Shear wave velocity estimate (Baldi, 1989)

- For uncemented, unaged quartizite sands:
 - $V_s = 277 (q_t)^{0.13} (\sigma_{v0}')^{0.27}$
 - V_s is in m/s
 - q_t and σ_{v0} are in units of MPa

Shear wave velocity estimate (Mayne and Rix, 1995)

- For soft to firm to stiff intact clays and fissured clays:
 - $V_s = 1.75 (q_t)^{0.627}$
 - V_s is in units of m/s
 - q_t is in units of kPa

Shear wave velocity estimation methods (Hegazy and Mayne, 1995)

- For all soil types:
 - $V_s = ((10.1) (\log q_t) 11.4))^{1.67} ((f_s/q_t) (100))^{0.3}$
 - \bullet V_s is in m/s
 - \blacksquare q_t and f_s are in units of kPa
- For all saturated soils:
 - $V_s = (118.8) (\log f_s) + 18.5$
 - V_s is in units of m/s
 - f_s is in units of kPa

Estimating the unit weight of saturated soils with shear wave velocity measurements

- $\gamma_T = 8.32 (\log V_s) (1.61) (\log z)$
 - γ_T is in units of kN/m³ (1kN/m³ = 6.366 lb/ft³)
 - V_s is in units of m/s
 - z is depth, in units of meters

Estimating the unit weight of saturated soils with CPT friction sleeve measurements

- $\gamma_{\text{sat}} = 2.6 (\log f_{\text{s}}) + 15 (G_{\text{s}}) 26.5$
 - γ_{sat} is in units of kN/m³ (1kN/m³ = 6.366 lb/ft³)
 - f_s is in units of kPa
- If G_s is assumed to be 2.65, the equation becomes:
 - $\gamma_{\text{sat}} = 2.6 (\log f_{\text{s}}) + 13.25$

Estimating the small strain shear modulus (G_0 or G_{max}) with shear wave velocity measurements and the soil unit weight

- $G_{\text{max}} = (\gamma_{\text{T}}/9.8) (V_{\text{s}}^2)$
 - G_{max} is in units of kN/m²
 - γ_T is in units of kN/m³
 - \mathbf{v}_{s} is in units of m/s

Soil Type	Small-strain shear modulus, G ₀ (kPa)
Soft clays	2,750 to 13,750
Firm clays	6,900 to 34,500
Silty sands	27,600 138,000
Dense sands and gravels	69,000 to 345,000

Estimation of the equivalent or initial Young's Modulus (E_0 or E_{max}) from the small-strain shear modulus (G_0 or G_{max})

- $E_0 = 2(G_0) (1 + v)$
 - v = 0.2 for drained conditions
 - v = 0.5 for undrained conditions
- The equivalent elastic modulus for larger strains is calculated as follows:
 - $\bullet E_s = (E/E_0)E_0$
 - $E_s = (1 q/q_{ult})^{0.3} (E_0)$

Soil Type	Range of Equivalent Elastic Modulus (kPa)
Clay Soft sensitive Medium stiff Very stiff	 2,500 to 15,000 15,000 to 50,000 50,000 to 100,000
Loess Silt	• 15,000 to 60,000 • 2,000 to 20,000
Fine sand Loose Medium dense Dense	 8,000 to 12,000 12,000 to 20,000 20,000 to 30,000
Sand Loose Medium dense Dense	 10,000 to 30,000 30,000 to 50,000 50,000 to 80,000
Gravel Loose Medium dense Dense	30,000 to 80,000 80,000 to 100,000 100,000 to 200,000

Estimating the <u>drained</u> soil stiffnesses, D' and E', from cone tip data (Mayne 2006)

- D' is the constrained modulus for drained loading.
- D' = α_c ' $(q_t \sigma_{v0})$
 - where α_c ' = 5 for normally consolidated clean sands, silts and intact clays (not for organic clays or cemented sands)
- E' is the Young's modulus for drained loading.
- E' = D' ((1 + v') (1 2(v'))/(1 v')
 - assume v' = 0.2 for drained conditions

However, it is recommended that soil stiffness be estimated with G_{max} correlations because q_t is a measure of soil strength, not stiffness. The relationship between D' and q_t is to be considered suspect at this time.

Estimating the preconsolidation stress (σ_p ') of intact clays from the net cone tip resistance

$$\sigma_p$$
' = 0.33 ($q_t - \sigma_{vo}$)

Estimating the preconsolidation stress (σ_p ') of intact clay from pore pressure data

$$\sigma_{p}' = 0.53 (u_2 - u_0)$$

$$\sigma_{\rm p}$$
' = 0.60 ($q_{\rm t} - u_{\rm 2}$)

This approach can <u>not</u> be used for clays that dilate and u_2 is <u>negative</u>.

Estimating the preconsolidation stress (σ_p ') of normally to over consolidated sand from the cone tip resistance data and the friction angle

$$\sigma_{\rm p}$$
' = $(\sigma_{\rm vo}$ ') (A/B) (1/(sin ϕ ' - 0.27))
$$A = (0.192) (q_{\rm t} / \sigma_{\rm atm})^{0.22}$$

$$B = (1-\sin \phi') (\sigma_{\rm vo}$$
'/ $\sigma_{\rm atm}$) 0.31

where
$$\phi' = (17.6 + (11.0) (log (((q_t/\sigma_{atm})/(\sigma_{vo}'/\sigma_{atm}))^{0.5}))$$
 and $\sigma_{atm} = 100 \ kPa = 1 \ TSF$

Estimating the preconsolidation stress (σ_p) of mixed soils from the small strain shear modulus

$$\sigma_{p}' = 0.101 \ (\sigma_{atm}^{0.102}) \ (G_{0}^{0.478}) \ ((\sigma_{v0}')^{0.420})$$

where $G_0 = (\gamma_T/9.8) (V_s^2)$ and $\sigma_{atm} = 100 \text{ kPa} = 1 \text{ TSF}$

Estimating the effective friction angle (φ') of clean sand from cone tip resistance data (Kulhawy and Mayne, 1990)

- $\phi' = 17.6 + (11.0) \left(\log \left(\left(\left(\frac{q_t}{\sigma_{atm}} \right) / \left(\frac{\sigma_{vo}}{\sigma_{atm}} \right) \right)^{0.5} \right) \right)$
 - φ' is in units of degrees
 - \blacksquare q_t, σ_{atm} and σ_{vo} are in the same units of stress
 - applies when $B_q < 0.1$
 - $\overline{\quad \quad } B_q = (u_2 u_0)/(q_t \sigma_{vo})$

FIGURE 41 Peak triaxial friction angle from undisturbed sands with normalized cone tip resistance.

Estimating the effective friction angle (φ') of mixed soil types with net tip resistance and pore pressure data (Senneset et al., 1988, 1989)

- $\phi' = 29.5 (B_q)^{0.121} (0.256 + 0.336 (B_q) + \log (Q))$
 - φ' is in units of degrees
 - Applies to $20 < \phi' < 45$ degrees
 - applies when $0.1 < B_q < 1.0$
 - $\mathbf{B}_{q} = (\mathbf{u}_{2} \mathbf{u}_{0})/(\mathbf{q}_{t} \mathbf{\sigma}_{vo})$
 - $Q = (q_t \sigma_{vo})/\sigma_{vo},$

Estimating the undrained shear strength (s_u) of clays from the preconsolidation stress (σ_p ')

$$s_u = 0.22 \, (\sigma_p')$$

- For OCR < 2
- Based on vane shear tests and back analysis from failures for embankments, footings and excavations.
- Fissured clays can exhibit s_u values 50% of the s_u of non-fissured clays. Fissured clays can be identified by the negative pore pressures during penetration.

Estimating the undrained shear strength (s_u) of clays from correlation with local experience

$$s_u = (q_t - \sigma_{v0})/N_{kt}$$

- N_{kt} is determined from local experience.
- N_{kt} is correlated to specific lab or field undrained shear strength test methods.

Estimating the sensitivity of soft clays

- For low OC clays, OCR < 2
- The friction sleeve measurement is regarded as an indication of the remolded shear strength.
 - $f_s = s_{ur}$
- Combining this formula with two of the previously presented relationships:
 - $\sigma_p' = 0.33 (q_t \sigma_{vo})$
 - $s_u = 0.22 (\sigma_p')$

$$S_{t} = 0.073 (q_{t} - \sigma_{vo})/f_{s}$$

Estimating the relative density (D_R) of relatively clean sand from tip resistance data (Jamiolkowski et al., 2001)

- $D_{R} = (100) ((0.268) ((\ln((q_{t}/\sigma_{atm})/(\sigma_{vo}'/\sigma_{atm})^{0.5}) 0.675))$
 - \blacksquare q_t, σ_{atm} and σ_{vo} are in the same units of stress
 - This formula applies to medium compressibility sands.
 - Carbonate sands are high compressibility.

• D_r can be used to determine ϕ ' with the same correlations that

are commonly used with SPT data.

Estimation of the coefficient of consolidation (c_{vh}) from pore pressure dissipation data and the rigidity index (Teh and Houlsby, 1991))

- Based on the strain path method (SPM).
- $c_{vh} = ((T_{50}) (a_c) (I_R)^{0.5})/t_{50}$
 - $T_{50} = 0.245$ for a 15 cm² cone tip
 - $a_c = 2.2$ cm for a 15 cm² cone tip
 - t_{50} is the observed time for dissipation of 50% Δu
 - I_R determination is on the next page

Estimation of the rigidity index (I_R) for clays and silts with net tip resistance and the pore pressure data (Mayne, 2001)

- $I_R = G/S_u$
- I_R is used to calculate c_{vh} .
- $I_R = \exp(((1.5/M) + 2.925) ((q_t \sigma_{vo})/(q_t u_2)) 2.95)$
 - where $M = 6(\sin \phi')/(3 \sin \phi')$

If plasticity index and OCR are known, this empirical correlation can be used.

Estimation of the horizontal coefficient of hydraulic conductivity (k_h) from the observed t₅₀ (Parez and Fauriel, 1988)

- The trend line can be used to estimate k_h.
- The k_h value may be useful for the design of ground improvement strategies, such as wick drains.

FIGURE 59 Direct evaluation of soil permeability from t_{∞} measured in piezo-dissipation tests (after Parez and Fauriel 1988; Leroueil and Jamiolkowski 1991).

Calculate the engineering properties of cohesionless soil from CPT data

- depth = 60 feet = 18.3 m
- $q_t = 18 \text{ TSF} = 1.8 \text{ MPa}$
- $f_s = 0.21 \text{ TSF} = 21 \text{ kPa}$
- $\sigma_{v0} = \sigma_{v0}$ ' = 3.6 TSF= 0.36 MPa
- $u_2 = 0 \text{ TSF} = 0 \text{ MPa}$
- $u_0 = 0 \text{ TSF} = 0 \text{ MPa}$

Calculate the engineering properties of cohesionless soil from CPT data

Shear wave velocity, v_s (Baldi)

$$V_s = 277 (q_t)^{0.13} (\sigma_{v0}')^{0.27}$$

$$V_s = 277 (18)^{0.13} (0.36)^{0.27}$$

$$V_s = 156 \text{ m/sec}$$

Total unit weight from v_s

$$\gamma_{\rm T} = 8.32 \, (\log V_{\rm s}) - (1.61) \, (\log z)$$

$$\gamma_T = 8.32 (\log 166) - (1.61) (\log 18.3)$$

$$\gamma_{\rm T} = 18.5 - 2.0 = 16.5 \text{ kN/m}^3 = 105 \text{ pcf}$$

Shear wave velocity, v_s (Hegazy, Mayne)

$$V_s = ((10.1) (\log q_t) - \bar{1}1.4))^{1.67} ((f_s/q_t) (100))^{0.3}$$

$$V_s = ((10.1) (\log 1800) - 11.4))^{1.67} ((21/1800) (100))^{0.3}$$

$$V_s = 167.7 (1.05) = 176 \text{ m/sec}$$

Total unit weight from f_s

$$\gamma_{\text{sat}} = 2.6 (\log f_{\text{s}}) + 13.25$$

$$\gamma_{sat} = 2.6 (\log 21) + 13.25$$

$$\gamma_{sat} = 16.7 \text{ kN/m}^3 = 106 \text{ pcf}$$

Small strain shear modulus

$$G_{\text{max}} = (\gamma_{\text{T}}/9.8) (V_{\text{s}}^2)$$

$$G_{\text{max}} = (16.6/9.8) (166^2)$$

$$G_{\text{max}} = 46,700 \text{ kPa}$$

Calculate the engineering properties of cohesionless soil from CPT data

Drained equivalent Young's modulus

$$E_0 = 2(G_0) (1 + v)$$

 $E_0 = 2(46,700) (1 + 0.2)$
 $E_0 = 112,000 \text{ kPa}$

Relative density

$$\begin{split} &D_R = (100) \ ((0.268) \ ((ln((q_t/\sigma_{atm})/(\sigma_{vo}\text{'}/\sigma_{atm})^{0.5}) - 0.675)) \\ &D_R = (100) \ ((0.268) \ ((ln((18/1.0)/(3.6/1.0)^{0.5}) - 0.675)) \\ &D_R = (100) \ ((0.268) \ ((2.25) - 0.675)) \\ &D_R = 42 \ \% \end{split}$$

Friction angle

```
\begin{split} \phi' &= 17.6 + (11.0) \left( \log \left( ((q_t/\sigma_{atm})/(\sigma_{vo}'/\sigma_{atm}))^{0.5} \right) \right) \\ \phi' &= 17.6 + (11.0) \left( \log \left( ((18/1.0)/(3.6/1.0))^{0.5} \right) \right) \\ \phi' &= 28 \text{ degrees} \end{split}
```

Calculate the engineering properties of cohesive soil from CPT data

- depth = 10 feet = 3.28 m
- $q_t = 19 \text{ TSF} = 1.9 \text{ MPa}$
- $f_s = 1.15 \text{ TSF} = 115 \text{ kPa}$
- $\sigma_{v0} = \sigma_{v0}' = 0.5 \text{ TSF} = 0.05 \text{ MPa}$
- $u_2 = 0 \text{ TSF} = 0 \text{ MPa}$
- $u_0 = 0 \text{ TSF} = 0 \text{ MPa}$

Calculate the engineering properties of cohesive soil from CPT data

Shear wave velocity, v_s (Mayne)

$$V_s = 1.75 (q_t)^{0.627}$$

$$V_s = 1.75 (1900)^{0.627}$$

$$V_s = 199 \text{ m/sec}$$

Total unit weight from v_s

$$\gamma_{\rm T} = 8.32 \, (\log V_{\rm s}) - (1.61) \, (\log z)$$

$$\gamma_{\rm T} = 8.32 \, (\log 247) - (1.61) \, (\log 3.28)$$

$$\gamma_{\rm T} = 19.9 - 0.8 = 19.1 \text{ kN/m}^3 = 121 \text{ pcf}$$

Shear wave velocity, v_s (Hegazy, Mayne)

$$V_s = ((10.1) (\log q_t) - \bar{1}1.4))^{1.67} ((f_s/q_t) (100))^{0.3}$$

$$V_s = ((10.1) (\log 1900) - 11.4))^{1.67} ((115/1900) (100))^{0.3}$$

$$V_s = 170.8 (1.72) = 294 \text{ m/sec}$$

Total unit weight from f_s

$$\gamma_{sat} = 2.6 (\log f_s) + 13.25$$

$$\gamma_{\text{sat}} = 2.6 (\log 115) + 13.25$$

$$\gamma_{sat} = 18.6 \text{ kN/m}^3 = 118 \text{ pcf}$$

Small strain shear modulus

$$G_{\text{max}} = (\gamma_{\text{T}}/9.8) (V_{\text{s}}^2)$$

$$G_{\text{max}} = (18.9/9.8) (247^2)$$

$$G_{\text{max}} = 117,700 \text{ kPa}$$

Calculate the engineering properties of cohesive soil from CPT data

Drained equivalent Young's modulus

$$\begin{split} E_0 &= 2(G_0) \ (1+\nu) \\ E_0 &= 2(117,700) \ (1+0.2) \\ E_0 &= 282,000 \ \text{kPa} \end{split}$$

Effective preconsolidation stress

$$\sigma_{\rm p}$$
' = 0.33 (q_t - $\sigma_{\rm vo}$)
 $\sigma_{\rm p}$ ' = 0.33 (1.9 - 0.05)
 $\sigma_{\rm p}$ ' = 0.61 MPa = 610 kPa = 12.2 ksf

Undrained shear strength

$$s_u = 0.22 (12.2)$$

$$s_u = 2.7 \text{ ksf}$$

Questions?